A VERY SIMPLE SYNTHESIS OF NATURAL SATURATED δ -SUBSTITUTED δ -LACTONES. THE PHEROMONE OF Vespa orientalis

Ramón BACARDIT and Marcial MORENO-MAÑAS*

Departamento de Química Orgánica. Universidad Autónoma de

Barcelona. Cerdanyola. Barcelona. Catalunya. Spain

Very facile syntheses of racemic massoia lactone and the pheromone of $\underline{\text{Vespa}}$ orientalis have been achieved starting from dehydroacetic acid.

 δ -Lactones are widely spread in nature; some of them are flavouring substances in plants and others are significant in insect behaviour 1 .

The availability of simple syntheses for important products, requiring the use of cheap and easily available reagents and starting materials is a matter of the uppermost interest. With this idea in mind we reasoned that the industrially available dehydroacetic acid, $\underline{1}$, could be an appropriate starting material for the preparation of the mentioned lactones. We describe now original and very efficient synthesis of 6-n-undecyltetrahydro-2-pyrone, $\underline{6b}$, pheromone of the oriental hornet ($\underline{\text{Vespa}}$ orientalis)² and of 6-n-pentyl-5,6-dihydro-2-pyrone, $\underline{5a}$, called massoia lactone, present in $\underline{\text{Cryptocaria}}$ massoia $\underline{^{3},\overline{^{4}},5}$, in $\underline{\text{Polianthes}}$ tuberosa $\underline{\mathsf{L}}^{6}$, and in two species of formicine ants of the genus $\underline{\text{Camponotus}}^{7}$.

Sequential alkylation⁸, deacetylation⁹, and hydrogenation^{10,11} afford the hydroxylactones $\underline{4}^{12}$, easily transformed into $\underline{5}$ and $\underline{6}^{13}$ (see scheme). The overall yields for $\underline{5}a$ and $\underline{6}b$ were 47 and 42%. By-products in the alkylation steps were isolated and characterized as $\underline{7-10}$ (a, R = \underline{n} -C₄H₉; b, R = \underline{n} -C₁₀H₂₁)¹⁴ by spectroscopic methods. They were derived from the trianion of $\underline{1}$.

i.- 1) 3 NaNH₂/liq. NH₃; 2) <u>n</u>-C₄H₉Br or <u>n</u>-C₁₀H₂₁Br. ii.- 90% H₂SO₄/130°/ 18 minutes. iii.- H₂/1 atm./r.t./Ra-Ni/EtOH. iv.- TsOH/Benzene/reflux. v.- H₂/1 atm./r.t./10% Pd-C/AcOEt.

Acknowledgements.- We acknowledge financial support from the "Comisión Asesora de Investigación" and a grant (to R.B.) from INAPE (Ministerio de Educación y Ciencia). We are very much indebted to Prof. Pirkle (Univ. of Illinois) for spectroscopic data of 6b.

References

- 1) a) G. Ohloff; Fortschr. Chem. Org. Naturstoffe, <u>35</u>, 431, (1978); b) J.M. Brand, J.C. Young, R.M. Silverstein; ibid., 37, 1, (1979).
- 2) W.H. Pirkle, P.E. Adams; J. Org. Chem., 44, 2169, (1979) and references cited therein.
- 3) H. Benoni, K. Hardebeck; Arzneim. Forsch., 14, 40, (1964) and references cited therein.
- 4) W.H. Pirkle, P.E. Adams; J. Org. Chem., 45, 4117, (1980).
- 5) K. Mori; Agric. Biol. Chem., 40, 1617, (1976).
- 6) R. Kaiser, D. Lamparsky; Tetrahedron Letters, 1976, 1659.
- 7) G.W.K. Cavill, D.V. Clark, F.B. Whitfield; Aust. J. Chem., <u>21</u>, 2819, (1968).
- 8) T.M. Harris, C.M. Harris, M.P. Wachter; Tetrahedron, 24, 6897, (1968).
- 9) J.N. Collie; J. Chem. Soc., 59, 607, (1891).
- 10) R. Bacardit, M. Moreno-Mañas; Tetrahedron Letters, 21, 551, (1980).
- 11) B. Nedjar, M. Hamdi, J. Périé, V. Hérault; J. Heterocyclic Chem., <u>15</u>, 1153, (1978).
- 12) The <u>cis</u> configuration is assigned by comparison of the pmr spectrum of $\underline{4a}$ and $\underline{4b}$ with that of $\underline{4}$ (R = CH₂)¹⁰.
- 13) Compounds $\underline{2-6}$ were fully characterized by comparison with reported data and/or authentic samples. Correct elemental analysis were secured for all new compounds. Induction of enantioselectivity at the hydrogenation step is under consideration.
- 14) M.p. or b.p. (oven temp./mm Hg): <u>2a</u>: 42-3°; <u>2b</u>: 70-1°; <u>3a</u>: 53-4°(Lit. ¹⁵, 46-7°); <u>3b</u>: 87-8° (Lit. ¹⁵, 80°); <u>4a</u>: liquid partially converted into <u>5a</u> upon vacuum distillation; <u>4b</u>: 53-6°; <u>5a</u>: 100-5°/0.2; <u>5b</u>: 32-4°(Lit. ¹⁶, 27-9°); <u>6a</u>: 100-5°/0.2; <u>6b</u>: 29-30°(Lit. ¹⁷, 29.5-30°); <u>7a</u>: 105°/0.15; <u>7b</u>: 73-7°; <u>8a</u>: 90-3°/0.25; <u>8b</u>: 140-5°/0.2; <u>9</u>: 198-201°/0.2; <u>10</u>: 200-3°/0.1.
- 15) F. Kögl, C.A. Salemink; Rec. Trav. Chim., <u>71</u>, 779, (1952).
- 16) P.C. Wailes; Aust. J. Chem., 12, 173, (1959).
- 17) G.M. Robinson; J. Chem. Soc., 1930, 745.

(Received September 7, 1981)